Tìm tất cả các giá trị của tham số m để hệ phương trình sau có nghiệm (x,y) thỏa mãn \(|\)x \(|\)
\(\le\)1
\(\hept{\begin{cases}\\\end{cases}}\)2x-y+1=0
X2-3xy+y2=2x+m2-4
có bao nhiêu giá trị nguyên của tham số m (biết \(m\ge-2019\)
để hệ phương trình sau có nghiệm thực
\(\hept{\begin{cases}x^2+x-\sqrt[3]{y}=1-2m\\2x^3-x^2\sqrt[3]{y}-2x^2+x\sqrt[3]{y}=m\end{cases}}\)
\(\hept{\begin{cases}x+y=2\\xy\left(x+y\right)=2.m^2\end{cases}}\) , với m là tham số. Tìm tất cả các giá trị của m để hệ có nghiệm.
dùm đi
Cho hệ phương trình \(\hept{\begin{cases}mx+y=m^2+m+1\\-x+my=m^2\end{cases}}\)m là tham số
Xác định m sao cho hệ có nghiệm (x,y) thảo mãn x2+y2 đạt giá trị nhỏ nhất
Biết hai hệ phương trình
\(\hept{\begin{cases}x+3y-1=0\\2x+3y-z=1\\\left(m+1\right)x+2z=2m-1\end{cases}}\) và \(\hept{\begin{cases}2x+y-z=1\\x-y-z=0\\x+ny-2nz=3\end{cases}}\)
có nghiệm chung. Tính giá trị m + n
Biết hai hệ phương trình
\(\hept{\begin{cases}x+3y-1=0\\2x+3y-z=1\\\left(m+1\right)x+2z=2m-1\end{cases}}\) và \(\hept{\begin{cases}2x+y-z=1\\x-y-z=0\\x+ny-2nz=3\end{cases}}\)
có nghiệm chung. Tính giá trị m + n
Cho hệ phương trình :
\(\hept{\begin{cases}2x-y=-4\\mx+y=-4\end{cases}}
\text{ }\)
Gọi ( x; y) là nghiệm của hệ phương trình.
Xác định giá trị của m để P = \(x^2+y^2\)đạt giá trị nhỏ nhất . Tính giá trị nhỏ nhất đó.
Tìm m để các hệ bất phương trình sau : có nghiệm, vô nghiệm, có nghiệm duy nhất ( Làm cả 3 cái đó trong 1 hệ chứ không phải là chỉ làm 1 cái trong 1 hệ thôi đâu ! )
a) \(\hept{\begin{cases}x+m-1>0\\3m-2-x>0\end{cases}}\) b) \(\hept{\begin{cases}x-1>0\\mx-3>0\end{cases}}\) c) \(\hept{\begin{cases}x+4m^2\le2mx+1\\3x+2>2x-1\end{cases}}\)
c) \(\hept{\begin{cases}7x-2\ge-4x+19\\2x-3m+2< 0\end{cases}}\) d) \(\hept{\begin{cases}mx-1>0\\\left(3m-2\right)x-m>0\end{cases}}\)
MỌI NGƯỜI GIÚP EM VỚI ! CẢM ƠN NHIỀU Ạ !!!
Biểu diễn hình học tập nghiệm của các bất phương trình bậc nhất hai ẩn sau:
a,\(\hept{\begin{cases}2x-1\le0\\-3x+5\le0\end{cases}}\)
b,\(\hept{\begin{cases}3-y< 0\\2x-3y+1>0\end{cases}}\)
c,\(\hept{\begin{cases}x-2y< 0\\x+3y>-2\end{cases}}\)
d,\(\hept{\begin{cases}3x-2y-6\ge0\\2\left(x-1\right)+\frac{3y}{2}\le4\\x\ge0\end{cases}}\)
e,\(\hept{\begin{cases}x-y>0\\x-3y\le-3\\x+y>5\end{cases}}\)
f,\(\hept{\begin{cases}x-3y< 0\\x+2y>-3\\y+x< 2\end{cases}}\)