cho P(x)=x2 - 5mx + 10m - 4
gọi x1 và x2 lần lượt là 2 nghiệm của P(x) sao cho x2=2x1
ta có: P(x1)=x12 - 5m.x1 + 10m - 4=0 (1)
P(x2)=x22-5m.x2+10m-4=0
=> (2.x1)2-5m.2x1+10m-4=0
4.x12-10mx1+10m-4=0 (2)
từ (1) và (2) suy ra:
3x12-5mx1=0 (trừ 2 vế với nhau)
x1(3x1-5m)=0
=> x1=0 hoặc 3x1-5m=0
3x1=5m
x1=\(\dfrac{5m}{3}\)
TH1: x1=0 thay vào (1) ta được:
02-5m.0+10m-4=0
m=\(\dfrac{2}{5}\)
thay x1=\(\dfrac{5m}{3}\) vào (1), ta được:
m=\(\dfrac{3}{5}\)
hoặc m=6/5 (bạn tự tính)
vậy m\(\in\){2/5; 3/5; 6/5}