Cho phương trình 4 - x - a . log 3 x 2 - 2 x + 3 + 2 - x 2 + 2 x . log 1 3 2 x - a + 2 = 0 . Tập tất cả các giá trị của tham số a để phương trình có 4 nghiệm x 1 ; x 2 ; x 3 ; x 4 thỏa mãn là (c;d). Khi đó giá trị biểu thức T = 2 c + 2 d bằng:
A. 5
B. 2
C. 3
D. 4
Tìm tất cả các giá trị của a để bất phương trình sau nghiệm đúng với mọi x.
a . 9 x + a - 1 3 x + 2 + a - 1 > 0
A. a > 1
B. a ≥ 1
C. a < 1
D. a ≤ 1
Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Bất phương trình y = f ( x ) có tập nghiệm là (a;b)

Tập tất cả các giá trị của tham số m để phương trình f ( x ) = m có ba nghiệm phân biệt là
A. ( 4 ; + ∞ ) .
B. ( − ∞ ; − 2 ) .
C. [ − 2 ; 4 ] .
D. ( − 2 ; 4 ) .
Cho phương trình m ln 2 x + 1 - x + 2 - m ln x + 1 - x - 2 = 0 1 . Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn 0 < x 1 < 2 < 4 < x 2 là khoảng a ; + ∞ . Khi đó, a thuộc khoảng
A. (3,8;3,9)
B. (3,7;3,8)
C. (3,6;3,7)
D. (3,5;3,6)
Cho hàm số y = f x = 2 x 2 − 7 x + 6 x − 2 k h i x < 2 a + 1 − x 2 + x k h i x ≥ 2 . Biết a là giá trị để hàm số f(x) liên tục tại x 0 = 2 , tìm nghiệm nguyên của bất phương trình − x 2 + a x + 7 4 > 0 .
A. 1
B. 4
C. 3
D. 2
Tổng tất cả các giá trị của a để hàm số f ( x ) = a 2 ( x - 2 ) x + 2 - 2 k h i x < 2 ( 1 - a ) x k h i x ≥ 2 liên tục trên R là
A. 1
B. 2
C. -1/2
D. -1
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d ( a , b , c , d ∈ ℝ ) có bảng biến thiên như hình sau:

Tìm tất cả giá trị thực của tham số m để phương trình m = f ( x ) có 4 nghiệm phân biệt trong đó có đúng một nghiệm dương.
A.m > 2
B.0 < m < 4
C.m > 0
D.2 < m < 4
Tổng bình phương tất cả các giá trị của a để hàm số f ( x ) = a 2 x - 2 ( x ≤ 2 ) 3 x + 2 3 - 2 x - 2 ( x > 2 ) liên tục tại x 0 = 2 là
A. 9/8
B. 0
C. 9/4
D. 3/2