Bài 1: Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 - 2xy - x + y + 3 = 0
Bài 2: Giải phương trình nghiệm nguyên: ( y2+1 )( 2x2+x+1) = x+5
Bài 3: Cho các số thực dương a,b thỏa mãn a + b = 2.
Tìm giá trị nhỏ nhất của biểu thức : P = \(\frac{a}{\sqrt{4-a^2}}+\frac{b}{\sqrt{4-b^2}}\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: y(x-1)=x^2+2
1, Tìm giá trị lớn nhất của biểu thức : \(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
2, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn : \(2x^2+y^2+4x=4+2xy\)
3, Cho x,y,z >0 . Chứng minh : \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
Tìm tất cả các cặp số nguyên x,y thỏa mãn x(x2+x+1)=4y-1
tìm tất cả các cặp số nguyên (x, y) thỏa mãn: x(x2 - y) + (y - 3)(x2 + 1) = 0
tìm tất cả cặp số nguyên (x;y) thỏa mãn đẳng thức:
(x+1)4_ (x+1)4= y3
tìm tất cả các cặp số nguyên dương (x;y)
thỏa mãn biểu thức 3/x+2/y=1
Tìm tất cả các số nguyên dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
Tìm tất cả các số nguyên dương thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)