\(\dfrac{3x}{2}-\dfrac{-2}{3}< x-\dfrac{2}{6}=\dfrac{3x}{2}-\left(-\dfrac{2}{3}\right)< x-\dfrac{2}{6}\)
= \(\dfrac{3x}{2}+\dfrac{2}{3}< x-\dfrac{2}{6}=\dfrac{3x}{2}+\dfrac{2}{3}< x-\dfrac{1}{3}\)
= \(\dfrac{3x}{2}+\dfrac{2}{3}-\dfrac{2}{3}< x-\dfrac{1}{3}-\dfrac{2}{3}=\dfrac{3x}{2}< x-1\)
= \(\dfrac{3x}{2}\times2< x\times2-1\times2=3x< x\times2-2\)
= \(3x-x\times2< x\times2-2-x\times2=x< -2.\)