\(\dfrac{6n+4}{2n+1}\in Z\)
\(\Rightarrow6n+4⋮2n+1\)
\(\Rightarrow6n+4-3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+4-6n-3⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-1;0\right\}\)
\(\dfrac{6n+4}{2n+1}=\dfrac{3\left(2n+1\right)+1}{2n+1}=3+\dfrac{1}{2n+1}\)
Để \(6n+4=2n+1\Leftrightarrow1⋮2x+1\)
\(\Leftrightarrow2n+1\inƯ\left(1\right)\)
\(\Rightarrow2n+1\in\left\{1;-1\right\}\)
\(\Rightarrow2n\in\left\{0;-2\right\}\)
\(\Rightarrow n\in\left\{0;-1\right\}\)
Vậy để`6n+4⋮2n+1` thì `n∈{0;-1}`