Tìm các số hữu tỉ a và b \(\left(a+b\sqrt{3}\right)^{2019}=\sqrt{1+\sqrt{3}}\)
Cho đa thức \(f\left(x\right)=ax^2+bx+2020\) có các hệ số a,b là các số hữu tỉ và \(f\left(\sqrt{3}-1\right)=2021\). Tìm a,b và tính \(f\left(1+\sqrt{3}\right)\)
1, Rút gọn A = \(\frac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\)
2, Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\) là số vô tỉ. Tìm a, b, c hữu tỉ để \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
1) Cho x,y >0 thỏa : \(\left(x+\sqrt{x^2+2017}\right)\)\(\left(y+\sqrt{y^2+2017}\right)\)\(=2017\)
Tính A= \(x^{2017}+y^{2017}+2017\)
2) Tìm x,y,z biết:
\(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
3) Cho a,b,c là các số hữu tỉ khác nhau. Cmr:
\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là một số hữu tỉ.
Cho đa thức f(x) = ax2 + bx + 2019 có hệ số a, b là các số hữu tỉ và \(f\left(1+\sqrt{2}\right)=2020.\)
Tìm a, b và tính \(f\left(1-\sqrt{2}\right)\)
Tìm bộ 3 số nguyên dương ( x ;y ;z ) thỏa mãn :\(\frac{x+y\sqrt{2019}}{y+z\sqrt{2019}}\)là số hữu tỉ đồng thời \(\left(y+2\right)\left(4xz+6y-3\right)\)là số chính phương
Cho a,b,c là 3 số hữu tỉ khác nhau đôi một. Cm: \(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là một số hữu tỉ
Cho a,b,c thỏa mãn a+b+c=2019
Tìm GTNN của biểu thức:
\(P=\sqrt[3]{4\left(a^3+b^3\right)}+\sqrt[3]{4\left(b^3+c^3\right)}+\sqrt[3]{4\left(a^3+c^3\right)}\)
cho a b c la số dương, biết a+b+c<=3. Tìm Pmin
\(P=\frac{a^2}{\left[\sqrt{b^3+8}-\left(c-1\right)^2\right]}+\frac{b^2}{\left[\sqrt{c^3+8}-\left(a-1\right)^2\right]}+\frac{c^2}{\left[\sqrt{a^3+8}-\left(b-1\right)^2\right]}\)