với \(n\in N\) chứng minh rằng
\(\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\in N\)
Chứng minh :\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}}< n+1\left(n\in Z^+\right)\)
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
Chứng minh rằng :
\(a,\sqrt{10}-\sqrt{2}=2.\sqrt{3-\sqrt{5}}\)b
\(b,\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\) là một số tự nhiên
c CMR với n thuộc N thì \(\left(\sqrt{n+1}-\sqrt{n}\right)^2=\sqrt{\left(2n+1\right)^2-1}\)
cho \(S_n=\left(\frac{3+\sqrt{5}}{2}\right)^n+\left(\frac{3-\sqrt{5}}{2}\right)^n-2\)là một số tự nhiên
Tìm số tự nhiên n để Sn là số chính phương
Chứng minh:
\(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\left(n\in N\right)\)
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
cho dãy số \(a_1,a_2,a_3,...,a_n\) với \(a_n=\frac{\left(2+\sqrt{3}\right)^n-\left(2-\sqrt{3}\right)^n}{2\sqrt{3}}\in Z\)
Tìm n để \(a_n\) chia hết cho 3
Cho dãy số:
\(U_n=\frac{\left(7+2\sqrt{5}\right)^n-\left(7-2\sqrt{5}\right)^n}{4\sqrt{5}};n\in N;n\ge1\)
CMR: Un+2=14Un+1-29Un