Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Chiến Đông

Tìm nghiệm nguyên dương của phương trình:\(2x^2+8x=67-3y^2\)

Hoàng Lê Bảo Ngọc
30 tháng 5 2016 lúc 18:06

Bạn thông cảm, mình phải sử dụng cách của lớp 9 vậy :))

\(2x^2+8x=67-3y^2\Leftrightarrow2x^2+8x+\left(3y^2-67\right)=0\)\(\left(x,y>0\right)\)

Xét \(\Delta'=16-2.\left(3y^2-67\right)=-6y^2+150\)

Để phương trình có nghiệm thì \(0\le\Delta'\le150\)

\(\Rightarrow0< y\le5\)(Vì x,y nguyên dương) 

Do đó ta xét y trong khoảng trên, được : 

1. Với y = 1 suy ra phương trình : \(2x^2+8x-64=0\Leftrightarrow x^2+4x-32=0\Rightarrow x=4\)(Nhận ) hoặc \(x=-8\)( Loại)

2. Với y = 2 suy ra phương trình : \(2x^2+8x-55=0\Rightarrow x=\frac{-4+3\sqrt{14}}{2}\)(Loại) hoặc \(x=\frac{-4-3\sqrt{14}}{2}\)(Loại)

3. Với y = 3 suy ra phương trình : \(2x^2+8x-40=0\Leftrightarrow x^2+4x-20=0\Rightarrow x=-2+2\sqrt{6}\)(loại) hoặc \(x=-2-2\sqrt{6}\)(Loại)

4. Với y = 4 suy ra phương trình : \(2x^2+8x-19=0\Rightarrow x=\frac{-4+3\sqrt{6}}{2}\)(Loại) hoặc \(x=\frac{-4-3\sqrt{6}}{2}\)(Loại)

5. Với y = 5 suy ra phương trình : \(2x^2+8x+8=0\Leftrightarrow x^2+4x+4=0\Rightarrow x=-2\)(Loại)

Vậy kết luận : Tập nghiệm của phương trình là : \(\left(x;y\right)=\left(4;1\right)\)


Các câu hỏi tương tự
Trần Hà Hương
Xem chi tiết
Bảo Bảo
Xem chi tiết
Pé Lùn
Xem chi tiết
Ngocmai
Xem chi tiết
Đan Linh
Xem chi tiết
lê thanh tùng
Xem chi tiết
Nguyễn Thảo Nguyên
Xem chi tiết
Lưu Dương Khả
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết