\(x^2-2x+2\)
\(=x^2-x-x+2\)
\(=x^2-x-x+1+1\)
\(=\left(x^2-x\right)-\left(x-1\right)+1\)
\(=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+1\ge1>0\)
\(\Rightarrow\) đa thức vô nghiệm.
\(x^2-2x+2=0\)
\(\Leftrightarrow x^2-2x+1+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=-1\) (vô nghiệm, vì: \(\left(x-1\right)^2\ge0\) )