\(\dfrac{1}{8}.16^n=2^n\Leftrightarrow16^n=2^n.8\)
\(2^{4n}=2^{n+3}\Rightarrow4n=n+3\Rightarrow3n=3\Rightarrow n=\dfrac{3}{3}=1\)
\(\dfrac{1}{8}.16^n=2^n\)
\(\Rightarrow\dfrac{16^n}{8}=2^n=\dfrac{24^n}{2^3}=2^n\)
\(\Rightarrow2^{4^n}-3=2^n\)
\(\Rightarrow4^n-3=n\)
\(\Rightarrow n=1\)
Vậy \(n=1\)
1/8.16^n=2^n
1/8.2^4n=2^n
1/2^3=2^n:2^4n
2^-3=2^n-4n
2^ -3=2^-3n
Suy ra n=1