Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ILoveMath

Tìm n tự nhiên không quá 200 sao cho: \(\left(2.8^n+n^3-16n+1\right)⋮3\)

Nguyễn Hoàng Minh
3 tháng 10 2021 lúc 16:29

\(\left(2\cdot8^n+n^3-16n+1\right)⋮3\)

Ta có \(2\cdot8^n+n^3-16n+1=2^{3n+1}+n\left(n-2\right)\left(n+2\right)+1\)

Vì \(2^{3n+1}⋮̸3;1⋮̸3\) nên \(2^{3n+1}+1⋮3;n\left(n-2\right)\left(n+2\right)⋮3\)

Ta thấy \(n;n-2;n+2\) là 3 số cách đều 2 nên tích của chúng chia hết cho 3

Vậy cần tìm n sao cho \(2^{3n+1}+1⋮3\)

Ta có \(1:3R2\) nên \(2^{3n+1}:3R2\)

Mà \(n< 200\Leftrightarrow2^{3n+1}< 2^{601}:3R2\)

Ta thấy với \(2^1;2^3;2^5;...\) đều chia 3 dư 2

Quy luật: 2 mũ lẻ chia 3 dư 2

\(\Rightarrow3n+1\in\left\{1;3;5;...;601\right\}\\ \Rightarrow n\in\left\{0;\dfrac{2}{3};\dfrac{4}{3};...;\dfrac{200}{3}\right\}\)

Mà \(n\in N\)

Vậy \(n=0\)


Các câu hỏi tương tự
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Minh Hiếu
Xem chi tiết
Không Tên
Xem chi tiết
Nguyễn Việt Nga
Xem chi tiết