Ta có :\(\frac{n^2-n-1}{n-1}=\frac{n\left(n-1\right)-1}{n-1}=\frac{n\left(n-1\right)}{n-1}-\frac{1}{n-1}=n-\frac{1}{n-1}\)
Để \(n^2-n-1⋮n-1\) khi \(n-\frac{1}{n-1}\) là số nguyên
\(\Rightarrow n-1\inƯ\left(1\right)=\){ - 1; 1 }
Với \(n-1=-1\Rightarrow n=0\left(TM\right)\)
Với \(n-1=1\Rightarrow n=2\left(TM\right)\)
Vậy \(n=0;2\) thì \(n^2-n-1⋮n-1\)
Theo đề ra ta có:
n2-n-1/n-1=n-1/n-1=1
=> có vô số số nguyên n.