\(P=\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{b+c}\right)+\dfrac{3a}{a+c}\)
\(=\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{a}{a+c}\right)+\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+c}\right)+\dfrac{2a}{a+c}\)
\(P\ge\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{a}{a+b}\right)+\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{a}{a+c}\right)+\dfrac{2a}{a+a}=2\)
Dấu "=" xảy ra khi \(a=b=c\)