ĐKXĐ : \(\dfrac{x}{y};\dfrac{y}{x}>0\)
Đặt \(t=\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}\) \(\ge2\) ( Cauchy )
Ta có : \(A=t^2-3t+2+2017=\left(t-2\right)\left(t-1\right)+2017\) \(\ge2017\)
" = " \(\Leftrightarrow x=y\)
ĐKXĐ : \(\dfrac{x}{y};\dfrac{y}{x}>0\)
Đặt \(t=\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}\) \(\ge2\) ( Cauchy )
Ta có : \(A=t^2-3t+2+2017=\left(t-2\right)\left(t-1\right)+2017\) \(\ge2017\)
" = " \(\Leftrightarrow x=y\)
Cho các số dương x,y,z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{z}=\dfrac{1}{x+y-z}=\dfrac{2020}{2021}\)
Tính giá trị biểu thức \(M=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}+\dfrac{1}{\sqrt{x+y-z}}\)
Cho các số thực dương x,y,z. Tìm GTNN của biểu thức \(A=\dfrac{x}{y}+\sqrt{\dfrac{y}{z}}+\sqrt[3]{\dfrac{z}{x}}\).
Cho các số thực dương x,y,z. Tìm GTNN của biểu thức \(A=\dfrac{x}{y}+\sqrt{\dfrac{y}{z}}+\sqrt[3]{\dfrac{z}{x}}\).
Với x,y,z là 3 số thực dương thỏa mãn x+y+z=3,tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{z}+\sqrt{x}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)
Cho 3 số dương x,y,z. Tìm giá trị nhỏ nhất của biểu thức
\(P=\dfrac{xz}{y^2+yz}+\dfrac{y^2}{xz+yz}+\dfrac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}}\)
Chứng minh rằng biểu thức sau không phụ thuộc vào biến
A = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\)
B = \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)
Chứng minh rằng biểu thức sau không phụ thuộc vào biến
A = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\)
B = \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)
Cho x, y, z > 0 thoả mãn x+y+z=2. Tìm GTNN của các biểu thức:
a) \(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)
b) \(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)
c) \(C=\sqrt{2x^2+\dfrac{3}{y^2}+\dfrac{4}{z}}+\sqrt{2y^2+\dfrac{3}{z^2}+\dfrac{4}{x^2}}+\sqrt{2z^2+\dfrac{3}{x^2}+\dfrac{4}{y^2}}\)
Tính GTLN của biểu thức A.
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}\)(đk: \(x\ge0,x\ne1,x\ne4\))
B2. Giải pt
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)