Lời giải:
-Nếu $x\geq 2$ thì \(A=x-2-2x+4=2-x\leq 0\). Dấu $=$ khi $x=2$
-Nếu \(2>x\geq 0\) thì \(A=2-x-2x+4=6-3x\leq 6\). Dấu $=$ khi $x=0$
-Nếu $x<0$ thì $A=6+x<6$
Do đó $A_{max}=6$ khi $x=0$
Lời giải:
-Nếu $x\geq 2$ thì \(A=x-2-2x+4=2-x\leq 0\). Dấu $=$ khi $x=2$
-Nếu \(2>x\geq 0\) thì \(A=2-x-2x+4=6-3x\leq 6\). Dấu $=$ khi $x=0$
-Nếu $x<0$ thì $A=6+x<6$
Do đó $A_{max}=6$ khi $x=0$
Tìm ĐKXĐ và rút gọn biểu thức
\(A=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(B=\left(\frac{2\sqrt{x}-x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{x-1}{x+\sqrt{x}+1}\)
\(C=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(D=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
CM rằng GT của bthức A ko phụ thuộc vào a
Tìm x để C = 4
Tìm x sao cho D < -1
a) gpt \(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
b) ghpt \(\left\{\begin{matrix}2\sqrt{x}\left(1+\frac{1}{x+y}\right)=3\\2\sqrt{y}\left(1-\frac{1}{x+y}\right)=1\end{matrix}\right.\)
1) cho a,b,c dương thỏa a+b+c=1 CMR \(\sqrt{\left(ab+c\right)\left(bc+a\right)\left(ac+b\right)}=\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
2) cho x,y dương thỏa mãn \(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}\) .tính tổng x+y
3) ghpt \(\left\{{}\begin{matrix}x^2+2y^2=2\\3x^2+4xy+4x+3y=y^2-4\end{matrix}\right.\)
4) gpt \(\sqrt{x^2+3}+\dfrac{4x}{\sqrt{x^2+3}}=5\sqrt{x}\)
cho x,y,m \(\in R\) thỏa \(\left\{\begin{matrix}2x-my=m\\mx+y=\frac{3m^2+4}{m^2+4}\end{matrix}\right.\)
a)CMR \(x^2+y^2=1\)
b) tìm MIN và Max của \(x^3+y^3\)
Cho \(x,y,z\in\left[0;2\right]\) . Tìm GTLN của biểu thức
\(P=\frac{1}{8}\left[\left(2-x\right)\left(2-y\right)\left(4-z\right)+\frac{8x}{y+z+2}+\frac{8y}{z+x+2}+\frac{8z}{x+y+2}\right]\)
1)cho a,b,c>0 CMR \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
2)tìm x,y nguyên dương thỏa \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4xy+9\)
3) ghpt a) \(\left\{{}\begin{matrix}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^4+3=4y\\y^4+3=4x\end{matrix}\right.\)
Biết \(x^2-y^2=1.\) Gía trị của biểu thức :
\(A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)+1\) là A =
Bài 1 giải hệ pt
a,\(\begin{cases}3\left(x+y\right)+9=2\left(x-y\right)\\2\left(x+y\right)=3\left(x-y\right)-11\end{cases}\)
bài 1, tính
\(\left(\frac{\sqrt{xy}-\sqrt{y}}{\sqrt{x}-1}+\frac{\sqrt{xy}-\sqrt{x}}{\sqrt{y}-1}\right)\cdot\left(\sqrt{xy}-\sqrt{y}\right)\)
\(\sqrt{9+4\sqrt{2}}-\sqrt{9-4\sqrt{2}}\)
Cho Q =\(\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\)
a, tìm điều kiện để xđinh
b, rút gọn
c, tìm x để Q=2