Lời giải:
$A^2=9x^2(8-3x^2)=3.3x^2(8-3x^2)\leq 3.\left(\frac{3x^2+8-3x^2}{2}\right)^2=3.4^2$ (theo BĐT AM-GM)
$\Rightarrow A\leq 4\sqrt{3}$
Vậy $A_{\max}=4\sqrt{3}$. Giá trị này đạt tại $x=\frac{2}{\sqrt{3}}$
Lời giải:
$A^2=9x^2(8-3x^2)=3.3x^2(8-3x^2)\leq 3.\left(\frac{3x^2+8-3x^2}{2}\right)^2=3.4^2$ (theo BĐT AM-GM)
$\Rightarrow A\leq 4\sqrt{3}$
Vậy $A_{\max}=4\sqrt{3}$. Giá trị này đạt tại $x=\frac{2}{\sqrt{3}}$
1)TÌM H min = \(\sqrt{x^2+4}+\sqrt{x^2+8x+17}\)
2) tìm G min,max A=3x+x\(\sqrt{5-x^2}\)
3)tìm min,max B=\(\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)
Tìm Min hoặc Max
\(F=\sqrt{-3x^2-6x+2}\)
1) Cho x,y > 0 thoả mãn : 1/x + 1/y =1/2 Tìm min : A = \(\sqrt{x}+\sqrt{y}\)
2) Tìm min max B = \(\sqrt{3x-5}+\sqrt{7-3x}\)
\(A=\left(\frac{6x+4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) rút gọn biểu thức A
b) tìm giá trị nguyên của x để A nhận giá trị nguyên
CHo biểu thức :
A = \(\left(\frac{6x-4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Rút gọn biểu thức A
b) Tìm các giá trị nguyên của x đẻ biểu thức A nhận giá trị nguyên
a)Rút gon P=\((-3x +5\sqrt(x)-2)/(x+4\sqrt(x)-5)\)
b) tìm các giá trị nguyên của x để P nguyên
c) tìm Max P
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Cho x,y là 2 số thực thỏa mãn:
\(^{x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}}\)
tìm Max A= 3x+4y
Cho biểu thức \(A=-\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
Tìm Max A