\(x^2-5mx-4m=0\)
Xét \(\Delta=25m^2+16m>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x< -\frac{16}{25}\\x>0\end{matrix}\right.\)
Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=-4m\end{matrix}\right.\)
Vì x1 và x2 là nghiệm pt nên
\(x_1^2-5mx_1-4m=0\Leftrightarrow x_1^2=5mx_1+4m\)
\(x_2^2-5mx_2-4m=0\Leftrightarrow x_2^2=5mx_2+4m\)
\(A=\frac{m^2}{5mx_1+16m+5mx_2}+\frac{5mx_2+16m+5mx_1}{m^2}\)
\(=\frac{m^2}{5m.5m+16m}+\frac{5m.5m+16m}{m^2}\)
\(=\frac{m}{25m+16}+\frac{25m+16}{m}\)
Tự giải tiếp