Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=m^2-(-3m+9)>0$
$\Leftrightarrow m^2+3m-9>0$
$\Leftrightarrow m> \frac{3\sqrt{5}-3}{2}$ hoặc $m< \frac{-3\sqrt{5}-3}{2}$
Áp dụng định lý Viet:
$x_1+x_2=2m; x_1x_2=-3m+9$
2 nghiệm có đúng một nghiệm lớn hơn 1, tức là nghiệm kia nhỏ hơn hoặc bằng 1.
Nếu nghiệm kia bằng 1, tức $1^2-2m-3m+9=0$
$\Rightarrow m=2$
Khi đó, pt trở thành $x^2-4x+3=0$
$\Rightarrow (x-1)(x-3)=0\Rightarrow x=3$ là nghiệm còn lại (thỏa mãn đề)
Nếu nghiệm kia $<1$
Điều này xảy ra khi: $(x_1-1)(x_2-1)< 0$
Để $(x_1-1)(x_2-1)< 0$
$\Leftrightarrow x_1x_2-(x_1+x_2)+1< 0$
$\Leftrightarrow -3m+9-2m+1< 0$
$\Leftrightarrow 10-5m< 0$
$\Leftrightarrow m< 2$
Vậy tóm lại $m\leq 2$ thì thỏa mãn đề.