\(x\left(x+1\right)^{10}=x\left(x^{10}+C_{10}^1x^9+C_{10}^2x^8+C_{10}^3x^7+C_{10}^4x^6+C_{10}^5x^5+C_{10}^6x^4+C_{10}^7x^3+C_{10}^8x^2+C_{10}^9x+1\right)\)
\(=x\left(x^{10}+10x^9+45x^8+120x^7+210x^6+252x^5+210x^4+120x^3+45x^2+10x+1\right)\)
\(=x^{11}+10x^{10}+45x^9+120x^8+210x^7+252x^6+210x^5+120x^4+45x^3+10x^2+x\)
=> Hệ số của \(x^4\) là 120