Tìm GTNN của biểu thức A, biết \(A=2014\sqrt{x}+2015\sqrt{1-x}\)
Tìm GTNN của biểu thức A
A = \(2014.\)\(\sqrt{x}+2015.\sqrt{1-x}\)
Tìm giá trị nhỏ nhất của biểu thức A = \(2014\sqrt{x}+2015\sqrt{1-x}\)
Tìm giá trị nhỏ nhất của biểu thức
A=\(2014\sqrt{x}+2015\sqrt{1-x}\)
a) Tính giá trị của biểu thức: \(A=2x^2+3x^2-4x+2\)
với \(x=\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
b) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
CM: x = y
a) Tìm GTNN của biểu thức : |x - 2015| + |x - 2016|.
b) Tìm GTLN của biểu thức : \(\sqrt{8+2x-x^2}\).
Tìm GTNN của biểu thức M=\(\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
1) Tìm GTNN của biểu thức \(A=x^2+4y^2+2xy-4x+2y+2015\)
2) Tìm GTLN, GTNN của \(B=\sqrt{x-1}+\sqrt{5-x}\)
3) Tìm GTLN của biểu thức \(M=\frac{2012}{x^2-4x+2016}\)
a) (x-\(\sqrt{x^2+5}\)) (y-\(\sqrt{y^2+5}\)) = 5 . Hãy tính giá tri biểu thức M = \(x^{2015}+y^{2015}\)
b) cho x = \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\). Tính giá trị của biểu thức A= \(x^{2015}-x^{2016}+2017\)
c) Tính giá trị của biểu thức A = \(x^{2012}+2x^{2013}+3x^{^{2014}}\)với x= \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\)- \(\sqrt{3-2\sqrt{2}}\)