\(x+y=1\Rightarrow y=1-x\)
\(A=3x^2+5x+14=3\left(x+\frac{5}{6}\right)^2+\frac{143}{12}\ge\frac{143}{12}\forall x\in R\)
vậy \(A_{min}=\frac{143}{12}\) khi \(x=-\frac{5}{6}\)
\(x+y=1\Rightarrow y=1-x\)
\(A=3x^2+5x+14=3\left(x+\frac{5}{6}\right)^2+\frac{143}{12}\ge\frac{143}{12}\forall x\in R\)
vậy \(A_{min}=\frac{143}{12}\) khi \(x=-\frac{5}{6}\)
Tìm GTLN và GTNN của biểu thức S = x2 + y2, biết x và y là nghiệm của phương trình: 5x2 + 8xy + 5y2 = 36
a, cho x+y=2 . tìm GTNN của A=x2+2y2+x - 2y+1
b, cho x+2y=1 . tìm GTLN của B=x2-5y2+3x - y - 2
c, cho x2+y2=4. tìm GTNN của D=x6+y6+x4+y4
PLZ ! HELP MEE!
giúp mình với! 2 tuần nữa thi cấp 3 rồi :((
Cho x,y,z>0 . Tìm GTNN của biểu thức :
\(P=\dfrac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\dfrac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\dfrac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)
cho x,y>0. tìm GTNN của \(A=\dfrac{\left(x+y+1\right)^2}{xy+x+y}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)
Giải các hệ phương trình:
\(a,\left\{{}\begin{matrix}7x+5y=19\\3x+5y=31\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}x+y=-2\left(x-1\right)\\7x+3y=x+y+5\end{matrix}\right.\)
1.Tìm Max,Min của \(A=\dfrac{2x^2-2xy+9y^2}{x^2+2xy+5y^2}\)(y khác 0)
2.Tìm a,b dể \(P=\dfrac{ãx^2+b}{x^2+1}\). Đặt GTNN=4 và GTLN=-1
cho 2 số dương x,y thỏa mãn x+2y<=18.tìm gtnn của p=9x+18y/xy +2x-5y/12+2018
Cho x,y là các số thực thỏa mãn \(5x^2+5y^2-5x-15y+8\le0\) tìm GTLN,GTNN của: \(x+3y+1\)
1. Tìm nghiệm nguyên của phương trình \(y^2-5y+62=\left(y-2\right)x^2+\left(y^2-6y+8\right)x\)
2. Cho x, y, z>0 và x+y+z=1. Tìm GTNN của biểu thức P=\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)