cho biểu thức \(A=\frac{x^2-x}{x^2-4x+4}:\left(\frac{x}{x-1}+\frac{x}{x-2}-\frac{x^2-2x-1}{x^2-3x+2}\right)\)
a)Rút gọn biểu thức A
b)Tìm GTNN của biêu r thức A khi x>2
Cho x > 0. Tìm GTNN của C = x + 1/(4x) + x/((2x+1)^2)
cho biết : A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x+2}\)
a, tìm đkxđ của A và rút gọn A
b, tính giá trị của A khi x=3
c, tìm giá trị nguyên của x để A có giá trị nguyên
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
Cho biểu thức P= x^4+x/x^2-x+1 +1 - 2x^2+3x+1/x+1
a). Rút gọn biểu thức P
b). Tính GTNN của P
1, cho A=( (x+1)/x - x/(1-x) - (x^2-2)/(x^2-x) ) : (x^2+x)/(x^2-2x+1)
a, rút gọn A
b, tìm GTLN của A
2, cho B= ( (x+1)/(x-1) - (x-1)/(x+1) + (x^2-4x-1)/(x^2-1) ) : x/(x+2019)
a,rút gọn A
b, với x là số nguyên, hãy tìm GTLN của A
Cho biểu thức: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
Với \(x\ne\pm2,x\ne0,x\ne3\)
a, Rút gọn biểu thức A
b,Tính giá trị của A khi \(x=\dfrac{1}{2}\)
c, Tính x khi A=1
d, Tìm \(x\in Z\) để A nguyên
e, Tìm x để biểu thức A>4
Cho biểu thức
A = \(\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}-\dfrac{2}{x-2}\right):\dfrac{x}{1-x+2}\)
( Với x ≠ +2,-2 )
a, Rút gọn A
b, Tìm giá trị của A khi x=-4
c, Tìm x ∈ Z để A ∈ Z
Cho biểu thức: B=\(\left[\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right].\dfrac{4x^2-4}{5}\)
a, Tìm điều kiện của x để giá trị của biểu thức được xác định
b, Chứng minh rằng: Khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị