A = 2\(x^2\) + 3y\(^2\) - 8\(x\) - 6y + 15
A = 2(\(x^2\) - 4\(x\) + 4) + 3(y\(^2-2y+1\)) + 6
A = 2.(\(x-2)^2\) + 3(y - 1)\(^2\) + 4
Vì (\(x-2)^2\) ≥ 0; ∀ \(x\); (y -1)\(^2\) ≥ 0 ∀ y
⇒ 2.(\(x-2)^2\) ≥ 0 ∀ \(x\); 3(y - 1)\(^2\) + 4 ≥ y ∀ y
2.(\(x-2)^2\) + 3(y - 1)\(^2\) + 4 ≥ 4; Dấu bằng xảy ra khi:
\(\begin{cases}x-2=0\\ y-1=0\end{cases}\)
\(\begin{cases}x=2\\ y=1\end{cases}\)
Vậy A đạt giá trị nhỏ nhất là 4 khi (\(x;y\)) = (2; 1)
