G = 5x2 + 5y2 + 8xy + 2y - 2x + 2020
G = ( 4x2 + 8xy + 4y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) + 2018
G = ( 2x + 2y )2 + ( x - 1 )2 + ( y + 1 )2 + 2018
\(\hept{\begin{cases}\left(2x+2y\right)^2\\\left(x-1\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2+2018\ge2018\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
=> MinG = 2018 <=> x = 1 ; y = -1