\(=x^2-6x+2019\)
\(=\left(x-3\right)^2+2010\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2010\ge0+2010\forall x\)
hay \(C\left(x\right)\ge2010\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy Min C(x)=2010 \(\Leftrightarrow x=3\)