\(A=2x^2+10y^2-6xy-6x-2y+16\)
\(\Leftrightarrow A=\left(x^2-6xy+9y^2\right)+\left(x^2-6x+9\right)+\left(y^2-2y+1\right)+6\)\(\Leftrightarrow A=\left(x-3y\right)^2+\left(x-3\right)^2+\left(y-1\right)^2+6\)
Do \(\left\{{}\begin{matrix}\left(x-3y\right)^2\ge0\forall x;y\\\left(x-3\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow A=\left(x-3y\right)^2+\left(x-3\right)^2+\left(y-1\right)^2+6\ge6\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\x-3=0\\y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\x=3\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy Min A là : \(6\Leftrightarrow x=3;y=1\)