Lời giải:
Áp dụng BĐT AM-GM ta có:
\(4x^4+1\geq 4x^2\)
\(x^2+\frac{1}{4x^2}\geq 1\)
Cộng 2 BĐT trên theo vế và thu gọn ta có:
\(4x^4-3x^2+\frac{1}{4x^2}\geq 0\)
\(\Rightarrow P=4x^4-3x^2+\frac{1}{4x^2}+2017\geq 2017\)
Vậy $P_{\min}=2017$. Giá trị này đạt được khi $x=\pm \frac{1}{\sqrt{2}}$