Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vvvvvvvv

Tìm giá trị nhỏ nhất của biểu thức E=3x2+14y2+6x-8y-12xy+10

Phạm Hoàng Hải Anh
1 tháng 5 2019 lúc 20:38

E=3x2+14y2+6x-8y-12xy+10

=4x2-x2+13y2+y2-6x-8y-12xy+9+1+36y2-36y2+16-16

=(4x2-6x+9) - (x2-12xy+36y2) + (y2-8y+16) +1+13y2+36y2-16

=(2x-3)2 - (x-6y)2 + (y-4)2 -15 +49y2 \(\ge-15\)

(vì \(\left\{{}\begin{matrix}\left(2x-3\right)^2\ge0\\\left(y-4\right)^2\ge0\\\left(x-6y\right)^2\ge0\\49y^2\ge0\end{matrix}\right.\left(với\forall x\right)\))

Để E =-15 thì :

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(2x-3\right)^2=0\\\left(y-4\right)^2=0\\\left(x-6y\right)^2=0\\49y^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y-4=0\\x-6y=0\\49y^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=4\\x=6y\\y=0\end{matrix}\right.\)

Thay x=\(\frac{3}{2}\) vào x=6y ta được \(\frac{3}{2}=6y\)

\(\Leftrightarrow y=\frac{1}{4}\)

Thay y=0 vào x=6y ta được x =6*0

\(\Leftrightarrow\)x=0

Thay y=4 vào x=6y ta được : x =6*4

\(\Leftrightarrow x=24\)

Vậy Min của E= -15 với các cặp (x;y) tương ứng :(\(\frac{3}{2};\frac{1}{4}\)); (0;0) ; (24;4)


Các câu hỏi tương tự
Nguyễn Phan Thu Ngân
Xem chi tiết
Lê Hà Ny
Xem chi tiết
thngann
Xem chi tiết
Băng Y
Xem chi tiết
Chira Nguyên
Xem chi tiết
Hoàng Kim Nghĩa
Xem chi tiết
Nguyễn Hà Dung
Xem chi tiết
bí mật
Xem chi tiết
Lý Thu Trang
Xem chi tiết