x^2+y^2>=0
=>25*(x^2+y^2)>=0(1)
mà:(12-3x-4y)^2>=0(2)
cộng (1) cho (2)=>25(x^2+y^2) + (12-3x-4y)^2>=0
=>min=0 khi x=y=0
x^2+y^2>=0
=>25*(x^2+y^2)>=0(1)
mà:(12-3x-4y)^2>=0(2)
cộng (1) cho (2)=>25(x^2+y^2) + (12-3x-4y)^2>=0
=>min=0 khi x=y=0
Cho x, y thay đổi thỏa mãn x+y=1
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy\)
Cho các số thực không âm x, y thay đổi và thỏa mãn x + y = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = (4x2 + 3y)(4y2 + 3x) + 25xy.
Cho biểu thức : M = x2 – 5x + y2 + xy – 4y + 2019.
Với giá trị nào của x, y thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
cho x,y,z dương thoản mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=3\)
Tìm giá trị nhỏ nhất của biểu thức: P = 3x + 4y + 6z
Bài: Cho x,y >0, x+y>=4. Tìm giá trị nhỏ nhất của biểu thức: A= 3x + 4y +\(\frac{5}{x}+\frac{9}{y}\)
Cho các số thực không âm x, y thỏa mãn x2 + 4y=8. Tìm giá trị nhỏ nhất của biểu thức P= x + y + 10/(x+y)
tìm giá trị lớn nhất giá trị nhỏ nhất của biểu thức của biểu thức M= (x^2-y^2)(1-x^2.y^2)/(1+x^2)^2.(1+y^2)^2
Cho x,y,z là các số thực thỏa mãn \(y^2+yz+z^2=1-\frac{3x^2}{2}\). Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P= x+y+z
Cho 2 số thực dương x,y. Tìm giá trị nhỏ nhất của biểu thức
P=căn[x^3/(x^3+8y^3)]+căn{4y^3/[y^3+(x+y)^3]}