\(A=\frac{x+8}{\sqrt{x}+1}=\frac{x-1+9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\)
\(\ge2\sqrt{\left(\sqrt{x}+1\right)\frac{9}{\sqrt{x}+1}}-2=2.3-2=4\)
Dấu \(=\)khi \(\sqrt{x}+1=\frac{9}{\sqrt{x}+1}\Leftrightarrow x=4\).
Vậy \(minA=4\)khi \(x=4\).
\(A=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}>\sqrt{x}-1\)mà \(\sqrt{x}-1\)không có GTLN do đó \(A\)cũng không có GTLN.