Lời giải:
a)
Ta có: \(1-x^2+6x=10-(x^2-6x+9)\)
\(=10-(x-3)^2\)
Vì \((x-3)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow 10-(x-3)^2\leq 10-0=10\)
Vậy GTLN của biểu thức là $10$ khi \((x-3)^2=0\Leftrightarrow x=3\)
b) Hoàn toàn tương tự như phần a:
\(11-10x-x^2=36-(x^2+10x+25)\)
\(=36-(x+5)^2\leq 36-0=36\)
Vậy GTLN của biểu thức la $36$ khi $x=-5$
c) \(19-9x^2+6x=20-(9x^2-6x+1)\)
\(=20-(3x-1)^2\leq 20-0=20\)
Vậy GTLN của biểu thức là $20$ khi $3x-1=0$ hay \(x=\frac{1}{3}\)