\(A=x^2-4x+2\)
\(=x^2-4x+4-2\)
\(=\left(x-2\right)^2-2>=-2\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
\(B=-x^2+2x-4y^2-4y+7\)
\(=-x^2+2x-1-4y^2-4y-1+9\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+9< =9\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\2y+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)