(Chú thích: sqrt là căn bậc 2)
ĐKXĐ: -3 < x <= 1
Bpt --> sqrt(-x^2 - 2x + 3) + x < 0
<=> -3 <= x < (-1 - sqrt(7))/2
Kết hợp ĐKXĐ
--> -3 < x < (-1 - sqrt(7))/2
(Chú thích: sqrt là căn bậc 2)
ĐKXĐ: -3 < x <= 1
Bpt --> sqrt(-x^2 - 2x + 3) + x < 0
<=> -3 <= x < (-1 - sqrt(7))/2
Kết hợp ĐKXĐ
--> -3 < x < (-1 - sqrt(7))/2
Tìm điều kiện xác định của bất phương trình:
\(\dfrac{\sqrt{\text{x - 2}}}{\text{x}+1}-\sqrt{\text{4 - x}}\ge0\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Giải pt 1) 2-\(\sqrt{\dfrac{x+2}{x-3}}=\sqrt{x+7}\)
2)tìm m để pt \(\dfrac{x-1}{x+1}-2\sqrt{\dfrac{x-1}{x+1}-3m-2=0}\) có nghiệm
Mk đang mắc ở chỗ đặt bằng t rồi chuyển đk của x về điều kiện của t
Cho hai phương trình \(\sqrt{x-6}\)+ x3-6x2+x-6=0(1) và \(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}\)=\(\sqrt{x-2}\)(2) (m là tham số). Số các giá trị của tham số m để phương trình (2) là phương trình hệ quả của phương trình (1).
A.0 B.1 C.2 D.3
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
Giải phương trình: \(\sqrt{x}\) + \(\sqrt{1-x}\) = 1 + \(\dfrac{2}{3}\sqrt{x-x^2}\)
Giải bất phương trình: \(3\left(x-2\right)+\sqrt{3x-4}< 3\sqrt{2x+1}+\sqrt{x-3}\)
\(x^2+x\sqrt{2\text{x}-\dfrac{3}{x}}=1+x\sqrt{x-\dfrac{2}{x}}\)
Giải phương trình
giải bất phương trình
\(\dfrac{\sqrt{2\left(x^2-16\right)}}{\sqrt{x-3}}+\sqrt{x-3}>\dfrac{7-x}{\sqrt{x-3}}\)