Ai trả lời dc mình tick
Ai trả lời dc mình tick
Cho cặp số (\(x;y\)) thỏa mãn hệ bất phương trình
\(\left\{{}\begin{matrix}2y\ge x\\y\le3x\\2x+3y\le12\end{matrix}\right.\)
Tìm GTLN và GTNN của F(\(x;y\)) = \(x+y-2\)
Tính tổng: \(S=C^1_{20}+2C^2_{20}+2^2C^3_{20}+...+2^{19}C^{20}_{20}\)
Cho hàm số y= 2x^2 -3(m+1)x +m^2 +3m -2 , m là tham số . TÌm tất cả các giá trị của m để giá trị nhỏ nhất của hàm số là lớn nhất
cho biểu thức A=\([\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a)Tìm điều kiện xác định
b)Rút gọn A
c)Biết xy=16 tìm các giá trị của x,y để A có giá trị nhỏ nhất, tìm giá trị đó.
1. cho hàm số . tìm điểm cố định
2. cho hàm số
\(y=m^2x^2+2\left(m-1\right)+m^2-1\left(P_m\right)\) . tìm điểm cố định
cho hàm số y=mx^2+(3m-1)x+2m-3. Gọi A là giá trị nhỏ nhất của hàm số. Tìm m sao cho A đạt giá trị lớn nhất
cho parabol (P): \(y=x^2-2x+4\) và đường thẳng d: \(y=2mx-m^2\) (m là tham số). tìm các gia strij của m để d cắt (P) tại 2 điểm phân biệt có hoành độ là \(x_1;x_2\) thỏa mãn \(x_1^2+2\left(m+1\right)x_2=3m^2+16\)
cho parabol (P): \(y=\dfrac{1}{2}x^2\) và đường thẳng d:\(y=\left(m+1\right)x-m^2-\dfrac{1}{2}\) (m là tham số)
tìm các giá trị của m thì đường thẳng d cắt parabol (P) tại 2 điểm \(A\left(x_1;y_1\right)\), \(B\left(x_2;y_2\right)\) sao cho biểu thức \(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\) đạt GTNN
cho hàm số y bằng -\(2x^2\)
tìm những điểm thuộc đồ thị hàm số có hoành độ là -2