Tìm các số thực A, B thỏa mãn \(\frac{3x+5}{x^2-4}=\frac{A}{x-2}+\frac{B}{x+2}\) với mọi số thực \(x\ne2\)
Xác định các hệ số a,b,c sao cho:\(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{9x^2-16x+4}{x^3-3x^2+2x}\)
Tìm các số a,b sao cho
\(\frac{x^2+5}{x^3-3x-2}=\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}\)
Bài 1: Cho biểu thức:
\(A=\left(\frac{2+x}{2-4}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
a, Rút gọn biểu thức A
b, Tìm giá trị của biểu thức A biết: \(\left|x-7\right|=4\)
Bài 2:
a, Tìm giá trị x nguyên để: \(3x^3+10x^2-6\)chia hết cho \(3x+1\)
b, Phân tích đa thức sau thành nhân tử: \(A=6x^4-11x^3+3x^2+11x-6x^2-3\)
Bài 3:
a, Cho ba số a,b,c khác 0 và đôi một khác nhau và thỏa mãn a+b+c=0
Tính giá trị của biểu thức: \(Q=\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
b, Tìm các số nguyên có 4 chữ số abcd sao cho ab, ac là các số nguyên tố và \(b^2=cd+b-c\)
c, Tìm các số nguyên x,y,z thỏa mãn: \(x^3+y^3+z^3=x+y+z+2017\)
Tìm các số a và b sao cho \(\frac{17x+18}{3x^2+x-14}=\frac{a}{x-2}+\frac{b}{3x+7}\)
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
1)tính giá trị của biểu thức : p=\(\frac{1}{2}\)+\(\frac{2}{2^2}\)+\(\frac{3}{2^3}\)+.......+\(\frac{2016}{2^{2016}}\)
2) cho x và y là 2 số thực thỏa mãn :x2+y2=1. tìm giá trị bé nhất của biểu thức P=x6+y6
3)tìm x nếu : (x2-4x+1)3=(x2-x-1)3-(3x-2)3
4)với a và b la f các số nguyên dương sao cho a+1 và b+2019 là các số chia hết cho 6. chứng minh rằng số 4a+a+b cũng chia hết cho 6
1) Cho x,y,a,b là các số thực thỏa mãn :\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\) và \(x^2+y^2=1\)
Chứng minh \(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}????\)
2) Cho a,b,c là các số thực dương. Chứng minh bất đẳng thức:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Bài 1:
1. Cho biểu thức \(A=\frac{1}{x-2}+\frac{x^2-x-2}{x^2-7x+10}-\frac{2x-4}{x-5}\)
a, Rút gọn A
b, Tìm \(x\in Z\)để A có giá trị nguyên
2. Biết \(a\left(a+2\right)+b\left(b-2\right)-2ab=63\)Tính \(a-b\)
Bài 2:
1. Cho x, y, a, b là những số thực thỏa mãn: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\)và \(x^2+y^2=1\)
Chứng minh: \(\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1008}}=\frac{2}{\left(a+b\right)^{1009}}\)
2. Tìm các hằng số a,b sao cho đa thức \(f\left(x\right)=x^4-x^3-3x^2+ax+b\) chia cho đa thức \(x^2-x-2\)dư \(2x-3\)
Bài 3: Cho đa thức \(A=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)
a, Phân tích A thành nhân tử
b, Chứng minh rằng nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì A-3xyz chia hết cho 6