tìm các số nguyên x;y thỏa mãn
2y^2x+x+y+1=x^2+2y^2+xy
Tìm các số nguyên x,y thỏa mãn \(2y^2x+x+y+1=x^2+2y^2+xy\)
Tìm các số nguyên x, y thỏa mãn x2y2+xy+1=2x-2y
Tìm các số nguyên x, y thỏa mãn đẳng thức:
2x2+y2+3xy+3x+2y+2=0
Tìm số nguyên x,y thỏa mãn 2 phương trình sau : 2y^2x + x + y + 1 = x^2 + 2y^2 + xy
Tìm các số nguyên x,y thoả mãn đẳng thức: \(2xy^2+x+y+1=x^2+2y^2+xy\)
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
tìm x,y thỏa mãn đẳng thức:
\(xy^2+2\left(x+y\right)+1=x^2+2y^2+xy.\)
Tìm x, y thỏa mãn các đẳng thức: x^3 + y^3 - 8xy√2(x^2 + y^2) + 7x^2y + 7xy^2 = 0 và √y - √(2x - 3) + 2x = 6