Tìm các số nguyên tố p và q thỏa mãn p^2 + pq + q^2 là lũy thừa cơ số 3.
Tìm các số nguyên tố p và q thỏa mãn p2 + pq + q2 là lũy thừa cơ số 3.
tìm các số nguyên tố p và q thỏa mãn p2 + pq + q2 là lũy thừa cơ số 3
1.cho p,q nguyên tố tìm x,y ∈ N*thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)
2.tìm x,y ∈ Z, p nguyên tố thỏa mãn \(x^4+4=p.y^4\)
giúp mình với mình cần gấp lắm .......
Tìm các số nguyên tố p và q thoả mãn p^2+pq+q^2 là luỹ thừa cơ số 3
tìm các số nguyên tố q,p,r thỏa mãn:pq-2r^2=4
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm các số tự nhiên n,x thỏa mãn:\(x^4+2^{2n+1}\)là số nguyên tố
:Tìm các số nguyên x, y thỏa mãn: x^4+x^2-y^2+y+10 .Choa,b,c là các số nguyên dương ,nguyên tố cùng nhau và thỏa mãn