Tìm các số nguyên tố p và q thoả mãn p^2+pq+q^2 là luỹ thừa cơ số 3
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Giả sử p,q là hai số nguyên tố thoả mãn đồng thời các điều kiện p>q>3, p - q =2 . Chứng minh rằng: p^3 + q^3 chia hết cho 36
Tìm các số nguyên tố p và q thỏa mãn p^2 + pq + q^2 là lũy thừa cơ số 3.
Cho p,q là các số nguyên tố thỏa mãn \(p\left(p-1\right)=q\left(q^2-1\right)\). Tìm p và q
Giúp em với ạ:((
Giả sử x,y là các số nguyên dương thay đổi thoả mãn : \(\frac{xy+1}{x+y}\)<\(\frac{3}{2}\) .Tìm giá trị lớn nhất của M=\(\frac{x^3y^3+1}{x^3+y^3}\)
Tìm các cặp số nguyên tố (p;q) thỏa mãn:
7pq2+p=q3+43p3+1
Bài 1:Tìm tất cả các cặp số tự nhiên (x,y) thỏa mãn: \(2^x\cdot x^2=9y^2+6y+16.\)
Bài 2: Tìm tất cả các cặp số nguyên (x,y) thỏa mãn: \(\left(x+1999\right)\left(x+1975\right)=3^y-81.\)
Bài 3: Chứng minh rằng với mọi số nguyên tố p thì \(5^p-2^p\)không thể là lũy thừa lớn hơn 1 của 1 số nguyên dương.
Bài 4: Tìm tất cả các cặp số nguyên dương (m,n) thỏa mãn \(6^m+2^n+2\)là số chính phương.
Bài 5: Tìm tất cả các số nguyên dương x,y,z thỏa mãn \(x^2+2^{y+2}=5^z.\)
MỌI NGƯỜI GIÚP MÌNH ĐƯỢC BÀI NÀO THÌ GIÚP NHÉ. CẢM ƠN NHIỀU.
Tìm các số nguyên tố p và q thỏa mãn p2 + pq + q2 là lũy thừa cơ số 3.