\(\dfrac{x}{x+3}>1\)
\(\Rightarrow\dfrac{x}{x+3}-1>0\)
\(\Rightarrow\dfrac{-3}{x+3}>0\)
\(\Rightarrow x+3< 0\) (do \(-3< 0\))
\(\Rightarrow x< -3\)
\(\dfrac{x}{x+3}>1\)
\(\Rightarrow\dfrac{x}{x+3}-1>0\)
\(\Rightarrow\dfrac{-3}{x+3}>0\)
\(\Rightarrow x+3< 0\) (do \(-3< 0\))
\(\Rightarrow x< -3\)
A=(\(\dfrac{x}{x^2-4}\)+\(\dfrac{2}{2-x}\)+\(\dfrac{1}{x+2}\)):(x-2+\(\dfrac{10-x^2}{x+2}\))
a) rút gọn A
b) tìm giá trị x để A<0
c) tìm các giá trị nguyên của x để A có GT nguyên
Bài 2: Cho A = \(\dfrac{x}{x+2}\)
B = \(\dfrac{x^2}{x^2-4}-\dfrac{1}{2-x}+\dfrac{1}{x+2}\)
a. Tìm đkxđ của A,B
b. Rút gọn B
c. Tìm gt nguyên lớn nhất của x để B nguyên
d. Ta có: P = A.B. Tìm x để P = \(\dfrac{3}{2}\)
Cho biểu thức : \(P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
a, Tìm điều kiện xác định
b, Rút gọn P
c, Tìm giá trị của x để P = 0, P = 1
d, Tìm các giá trị của x để P > 0.
Bài 1. Cho biểu thức: \(\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tìm x để P = \(\dfrac{-3}{4}\)
d) Tìm các giá trị nguyên của x để biểu thức P cũng có giá trị nguyên
e) Tính giá trị của biểu thức P khi \(x^2-9=0\)
Tìm các giá trị nguyên của x để mỗi biểu thức sau có giá trị nguyên:
a) \(\dfrac{6}{2x+1}\) d)\(\dfrac{2x+3}{x-3}\)
b)\(\dfrac{-15}{3x-1}\) e)\(\dfrac{x+3}{2x-1}\)
c)\(\dfrac{x-3}{x-1}\)
Cho biểu thức M = \(\dfrac{x+1}{x-2}\)và N = \(\dfrac{x+1}{x-3}\)- \(\dfrac{2}{x-3}\)+ \(\dfrac{5x+3}{x^2-9}\)
a) Rút gọn N
b) Tìm các giá trị nguyên của x để P = M.N nhận giá trị nguyên
Cho hai biểu thức A = \(\dfrac{x^2+x}{3\left(x+3\right)}\) và B = \(\dfrac{1}{x+1}-\dfrac{1}{1-x}-\dfrac{3-x}{x^2-1}\) với x ≠ -3; -1, 1
a) Tính giá trị của biểu thức A khi | x + 4 | = 1
b) Rút gọn biểu thức B
c) Tìm các giá trị của x để B.A <1
1) Tìm GTNN của bt :
A=(x-1)(2x-1)(2x2-3x-`)+2018
2) Cho \(x+\dfrac{1}{x}=3\) . Tính gt của bt A= \(x^3+\dfrac{1}{x^3}\)
Cho biểu thức \(P=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
a, Tìm điều kiện của x để giá trị của phân thức xác định
b, Tìm x để P = 0
c, Tìm x để \(P=-\dfrac{1}{4}\)
d, Tìm x để P > 0 ; P < 0
Cho biểu thức: Q= \(\dfrac{x+3}{2x+1}-\dfrac{x-7}{2x+1}\)
Tìm các giá trị nguyên của x để Q nhận giá trị nguyên