Vì x,y,z nguyên dương
Không mất tính toongr quát. Giả sử \(1\le x\le y\le z\)
Theo bài ra ta có: 2(x+y+z)=xyz
\(\Rightarrow\frac{x+y+z}{xyz}=\frac{1}{2}\)\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}\ge\frac{1}{2}\)
\(\Rightarrow\frac{3}{x^2}\ge\frac{1}{2}\)
\(\Rightarrow x^2\le6\)
\(\Rightarrow x=\left\{1;2\right\}\)(vì x nguyên dương)
* TH1: x=1 Ta có:
2(1+y+z)=yz
=>2+2y+2z-yz=0
=> (2y-yz)+(-4+2z)=-6
=>y(2-z)-2(2-z)=-6
=>(y-2)(z-2)=6
Vì y,z là số nguyên dương \(\left(y-2\right)\left(z-2\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
Lập bảng giá trị:
| y-2 | 1 | 2 | 3 | 6 |
| y | 3 | 4 | 5 | 8 |
| z-2 | 6 | 3 | 2 | 1 |
| z | 8 | 5 | 4 | 3 |
*TH2: x=2 bạn làm tương tự