\(5y-3x=2xy-11\)
\(\Rightarrow2xy+3x-5y-11=0\)
\(\Rightarrow4xy+6x-10y-22=0\)
\(\Rightarrow\left(4xy+6x\right)-\left(10y+15\right)=7\)
\(\Rightarrow2x\left(2y+3\right)-5\left(2y+3\right)=7\Rightarrow\left(2x-5\right)\left(2y+3\right)=7\)
Xét từng trường hợp :
1. \(\hept{\begin{cases}2x-5=1\\2y+3=7\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
2. \(\hept{\begin{cases}2x-5=7\\2y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=-1\end{cases}}}\)
3. \(\hept{\begin{cases}2x-5=-1\\2y+3=-7\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-5\end{cases}}}\)
4. \(\hept{\begin{cases}2x-5=-7\\2y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}}\)
Vậy nghiệm của phương trình là : \(\left(x;y\right)=\left(-1;-2\right);\left(2;-5\right)\left(3;2\right);\left(6;-1\right)\)