Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Curry

Tìm các giá trị nguyên của x để A nguyên:

A=(x^2+1)^2/(x^4-x^2-2)

Huyền
1 tháng 7 2019 lúc 17:53

\(A=\frac{x^2+1}{x^4-x^2-2}=\frac{x^2+1}{\left(x^2+1\right)\left(x^2-2\right)}=\frac{1}{x^2-2}\)

\(\Rightarrow x^2-2\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Leftrightarrow x^2\in\left\{1;3\right\}\)

\(\Rightarrow x=\pm1\)(vì x nguyên)


Các câu hỏi tương tự
Võ Thị Kiều Khanh
Xem chi tiết
Big City Boy
Xem chi tiết
ngọc linh
Xem chi tiết
Phương Thảo Nguyễn
Xem chi tiết
Tuyết Linh Linh
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Võ Thùy Trang
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết
Big City Boy
Xem chi tiết