Viết dưới dạng pt ẩn x:
\(x^2-2\left(y-3\right)x+\left(y^2-4y+5\right)=0\)
Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow\left(y-3\right)^2-\left(y^2-4y+5\right)\ge0\Leftrightarrow-2y+4\ge0\Leftrightarrow y\le2\)
Vậy Max y = 2, khi đó x = -1.
Viết dưới dạng pt ẩn x:
\(x^2-2\left(y-3\right)x+\left(y^2-4y+5\right)=0\)
Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow\left(y-3\right)^2-\left(y^2-4y+5\right)\ge0\Leftrightarrow-2y+4\ge0\Leftrightarrow y\le2\)
Vậy Max y = 2, khi đó x = -1.
Tìm (X;Y) thõa mãn:\(X^2+5Y^2+2X-4XY-3=0\)sao cho Y nhận giá trị lớn nhất
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
cho hệ pt \(\hept{\begin{cases}\left(a-1\right)x+y=a\\x+\left(a-1\right)y=2\end{cases}}\)có nghiệm duy nhất (x;y)
1) Tìm đẳng thức liên hệ giữa x,y không phụ thuộc vào a
2) Tìm các giá trị của a thõa mãn 6x2 -17y = 5
3) Tìm các giá trị nguyên của a để biểu thức \(\frac{2x-5y}{x+y}\)nhận giá trị nguyên
Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) sao cho tích \(xy\) đạt giá trị lớn nhất.
cho 3 số thực bất kì x:y;z thỏa mãn x^2010+y^2010+z^2010=3 tìm giá trị lớn nhất của x^2+y^2+z^2 ?
tìm các số nguyên x,y thõa mãn đẳng thức 5x^2+3y^2+4xy-2x+8y+8<0
tìm x để y đạt giá trị nhỏ nhất thỏa mãn :
x2 +5y2 +2y -4xy -3 =0
giải cho me bài này với !
cho x, y là 2 số thực thõa mãn: x2 + 2y2 + 2xy + 7x +7y + 10 = 0
tìn giá trị nhỏ nhất và giá trị lớn nhất của biểu thức : A = x + y +1
1/ cho \(^{5x^2+y^2+4xy+4x+4y-1=0}\)
tìm giá trị lớn nhất của S=2x+y-2 và giá trị x,y
2/cho \(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)
tìm giá trị lớn nhất của S=x+y+1 và giá trị x,y
3/ cho \(3x^2+y^2+2xy+4=7x+3y\)
tìm giá trị lớn nhất của S=x+y+1