\(B=x^2-x\)
\(B=x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
mà \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Bmin = 1/4 <=> x = 1/2
P.s : đây là tìm B min
Còn cách nữa tìm Bmax :v
Vì \(x^2\ge0\forall x\)
\(\Rightarrow B\le x\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy Bmax = 0 <=> x = 0
Ta có B= x2 - x= \(\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)-\frac{1}{4}\) =\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\) \(\le\frac{-1}{4}\)( vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\inℝ\))
Suy ra B\(\le\frac{-1}{4}\)
Dấu "=" xảy ra <=> \(\left(x-\frac{1}{2}\right)^2=0\) <=>\(x-\frac{1}{2}=0\) <=> \(x=\frac{1}{2}\)
Vậy B max =\(\frac{-1}{4}\Leftrightarrow x=\frac{1}{2}\)