\(A=\frac{\frac{3}{4}\left(a^2+2a+1\right)+\frac{1}{4}\left(a^2-2a+1\right)}{\left(a+1\right)^2}=\frac{3}{4}+\frac{\left(a-1\right)^2}{4\left(a+1\right)^2}\ge\frac{3}{4}\)
\(Q_{min}=\frac{3}{4}\) khi \(a=1\)
\(A=\frac{\frac{3}{4}\left(a^2+2a+1\right)+\frac{1}{4}\left(a^2-2a+1\right)}{\left(a+1\right)^2}=\frac{3}{4}+\frac{\left(a-1\right)^2}{4\left(a+1\right)^2}\ge\frac{3}{4}\)
\(Q_{min}=\frac{3}{4}\) khi \(a=1\)
Bài 1
Cho 3 số dương a,b,c có tổng bằng 1. Tìm min \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Bài 2:
Tìm min của \(A=3\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}\right)-8\left(\frac{a}{b}+\frac{b}{a}\right)\)
Cho biểu thức \(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính GTBT A tại \(\left|x\right|=\frac{1}{2}\)
\(c,Tìm\) giá trị của x để A < 0.
d, Tìm \(x\in Z\) để \(A\in Z\)
Cho a,b,c>0. Tìm Min P=\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Q=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho -1 < x < 1. tìm Min A với A = \(\frac{\left(3x-5\right)^2}{1-x^2}\)
Tìm các số A , B , C để có
a) \(\frac{x^2-x+2}{\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\)
b) \(\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}\)
Cho biểu thức: \(\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\) Tìm a để M>= 4/5
1,cho a,b,c là số thực dương thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}=3\)
và \(\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{1}{\left(a-b\right)^2}=1\)
Tính
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\)
Cho\(A=\frac{\left(x^2+y\right)\left(\frac{1}{4}+y\right)+x^2y^2+\frac{3}{4}\left(\frac{1}{3}+y\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a, Tìm tập xác định của A
b, Cmr giá trị của A không phụ thuộc vào x
c, Tìm Min A và giá trị tương ứng của y
ta có
\(\frac{\left(2018-x\right)^2+\left(2018-x\right)\left(x-2019\right)+\left(x-2019\right)^2}{\left(2018-x\right)^2-\left(2018-x\right)\left(x-2019\right)-\left(x-2019\right)^2}=\frac{19}{49}\) ( điều kiện : x khác : 2018;2019 )
đặt a = x - 2019 ( a khác 0 )
ta có hệ thức :
\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\\ \Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)
\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)
\(\Leftrightarrow8a^2+8a-30=0\\ \left(2a+1\right)^2-4^2=0\\ \Leftrightarrow\left(2a+3\right)\left(2a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)( thỏa mãn điều kiện )
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4041}{2}\\x=\frac{4033}{2}\end{matrix}\right.\)( thỏa mãn điều kiện )
vậy \(x\in\left\{\frac{4041}{2};\frac{4033}{2}\right\}\)