cho xyz khác 0 thỏa mãn x^3+y^3+z^3=x^5+y^5+z^5.tính S=x^2+y^2+z^2
Cho 3 số thực dươi x,y,z biết xyz=1
Cmr \(\frac{1}{x^2+y^2+1}+\frac{1}{x^2+z^2+1}+\frac{1}{y^2+z^2+1}\le1\)
cho x y z thỏa mãn x+y+z+căn xyz=4 cm căn x(4-y)(4-z) + căn y(4-x)(4-z) +căn z(4-x)(4-y) - căn xyz= 8
cho x,y,z>0 thỏa xyz=x+y+z+2. chứng minh:
\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\dfrac{3\sqrt{xyz}}{2}\)
Cho x, y, z là các số thực dương thoả mãn x + y + z =xyz. Chứng minh rằng: \(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho 3 số dương x,y,z thỏa mãn \(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=3\sqrt{xyz}\). Tính A=\(\left(1+\dfrac{\sqrt{x}}{\sqrt{y}}\right)\left(1+\dfrac{\sqrt{y}}{\sqrt{z}}\right)\left(1+\dfrac{\sqrt{z}}{\sqrt{x}}\right)\)
Cho 3 số x,y,z đồng thời khác 0 và thỏa mãn:
x+\(\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}\).Chứng minh rằng x=y=z hoặc \(\left|xyz\right|\)=1
Cho x, y, z là các số dương. Chứng minh :
\(\left(xyz+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\ge x+y+z+6\)
Cho x, y, z > 0 thỏa mãn : x + y + z = xyz. CMR :
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)