Bài 3: Đường tiệm cận của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Tiệm cận xiên của đồ thị hàm số \(y=\dfrac{x^2+3x+5}{x+2}\) là:

A. y = x.                  B. y = x + 1.                C. y = x + 2.                 D. y = x + 3.

datcoder
27 tháng 9 lúc 0:03

Ta có: \(y = \frac{{{x^2} + 3x + 5}}{{x + 2}} = x + 1 + \frac{3}{{x + 2}}\)

Xét \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{x + 2}} = 0\)

Vậy đường thẳng \(y = x + 1\) là đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 3x + 5}}{{x + 2}}\)