\(\frac{1}{100.99}-\frac{1}{99.98}-......-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(-\frac{1}{100.99}+\frac{1}{99.98}+...........+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=-\left(-\frac{1}{100}-\frac{1}{99}+\frac{1}{99}-\frac{1}{98}+......+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(=-\left(-\frac{1}{100}-1\right)\)
\(=\frac{1}{100}+1\)
\(=\frac{101}{100}\)