Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 3 - 3 ( m + 1 ) x 2 + 6 m x có hai điểm cực trị là A và B sao cho đường thẳng AB vuông góc với đường thẳng d : y = x + 2 Số phần tử của S là
A. 0
B. 1
C. 2
D. 3
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = x 3 - m + 1 x 2 + m 2 - 2 x - m 2 + 3 có hai điểm cực trị và hai điểm cực trị đó nằm về cùng một phía đối với trục hoành?
A. 4
B. 1
C. 3
D.
Cho hàm số y = x 3 + 3 m x 2 − m có đồ thị (C). Tất cả các giá trị của tham số thực m để (C) có hai điểm cực trị nằm về cùng một phía so với trục hoành là
A. m < − 1 2 h o ặ c m > 1 2
B. − 1 2 < m < 1 2 v à m ≠ 0
C. 0 < m < 1 2
D. − 1 2 < m ≤ 0
Tìm tất cả giá trị thực của m để đồ thị hàm số y = 1 3 x 3 - m x 2 + ( 2 m + 1 ) x - 3 có hai cực trị nằm cùng phía với trục tung.
A. m ∈ ( 1 ; + ∞ )
B. m ∈ 1 2 ; 1 ∪ ( 1 ; + ∞ )
C. m ∈ 1 2 ; + ∞
D. m ∈ - ∞ ; 1 2
Tìm các giá trị của tham số m để đồ thị hàm số y = x 3 - 3 x 2 + m + 2 x - m có hai điểm cực trị nằm về hai phía của trục hoành
A. m ≤ - 2
B. m < 1
C. m < - 2
D. m < 2
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = x 3 − 8 x 2 + ( m 2 + 11 ) x - 2m 2 + 2 có hai điểm cực trị nằm về hai phía của trục Ox.
A. 4
B. 5
C. 6
D. 7
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = 1 3 x 3 − m − 1 x 2 + m − 1 x + m 2 có hai điểm cực trị nằm về phía bên phải trục tung.
A. m < 0
B. m < 1
C. m > 2
D. m > 0
Cho hàm số y = x 3 + 1 − 2 m x 2 + 2 2 − m x + 4. Với giá trị nào của tham số m thì đồ thị hàm số có hai điểm cực trị nằm về hai phía của trục hoành?
A. m > 2 m < − 2 .
B. − 2 < m < 2.
C. m ≥ 2 − 5 2 ≠ m ≤ − 2 .
D. m > 2 − 5 2 ≠ m < − 2 .
Cho hàm số y = x 3 + ( m + 3 ) x 2 - ( 2 m + 9 ) x + m + 6 có đồ thị (C). Tìm tất cả các giá trị thực của tham số m để (C) có hai điểm cực trị và khoảng cách từ gốc toạ độ O đến đường thẳng nối hai điểm cực trị là lớn nhất.
A. m = - 6 ± 3 2 2
B. m = - 3 ± 3 2 2
C. m = - 3 ± 6 2
D. m = - 6 ± 6 2